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1 Dept of Computer Science, Amsterdam University of Applied Sciences,
Amsterdam, The Netherlands

a.nait.aicha@hva.nl,
http://www.digitallifecentre.nl

2 Dept of Computer Science, University of Amsterdam, Amsterdam, The Netherlands

Abstract. We present a method for measuring gait velocity using data
from an existing ambient sensor network. Gait velocity is an impor-
tant predictor of fall risk and functional health. In contrast to other
approaches that use specific sensors or sensor configurations our method
imposes no constraints on the elderly. We studied different probabilistic
models for the description of the sensor patterns. Experiments are car-
ried out on 15 months of data and include repeated assessments from
an occupational therapist. We showed that the measured gait velocities
correlate with these assessments.
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1 Introduction

With the increasing number of older adults that live independently in their own
homes, sensing systems that monitor someone’s health are becoming popular.
A wide range of sensor systems exists, often aimed at specific applications such
as sleep monitoring or medicine intake monitoring. For more general lifestyle5

monitoring, ambient sensor networks consisting of motion and switch sensors
mounted in the environment have been presented. In this paper, we focus on
measuring gait velocity (walking speed) of elderly with such systems. Gait ve-
locity is an important predictor of functional health; it is shown that it predicts
the risk of falls [11,14], but also of hospitalization and survival [17]. For that rea-10

son, gait velocity is an important measure in comprehensive geriatric assessment
in clinical settings.

The disadvantage of the clinical assessments is that the tests are usually
carried out over a short period of time in an unnatural setting. In long term
studies, regular measurements by a therapist are time consuming and therefore15

expensive. The measurements may also be subjective to the therapist taking the
tests.

Continuous domestic monitoring may provide a clearer and more objective
picture of a person’s mobility. Systems have been presented that suggest specific
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sensors in the home such as RGB-D cameras, radar sensors [20], motion sensors20

placed in an array [10], or use wearable sensors such as accelerometers [13].

We developed a system for measuring gait velocity from an existing ambi-
ent sensor network. Because the elderly are not instructed to follow predefined
paths, the variations in walking patterns will be large. The contributions of this
paper are: (1) we propose a method for automatically identifying useful paths25

for speed estimation, (2) we show that unconstrained daily activities result in
non-trivial distributions over path durations and propose a model to deal with
those (3) we investigate whether long paths or short paths provide a more con-
sistent measurement of walking speed. Finally, we compared the results with
measurements from an occupational therapist over a period of 15 months.30

2 Related Work

Approaches for continuous walking speed assessment for elderly use either wear-
able sensors or ambient sensors. A review of wearable sensors for gait analysis
is given in [18]. Apart from velocity, other characteristics of the gait may be
measured such as under-foot pressure (the GaitShoe [2], the Smart Insole [21]35

and the In-Shoe device [5]) and rotation of the foot, that can be measured
with gyroscopes. Pedometers are suitable for a long-term measurement of the
physical activity. However, the accuracy of these pedometers is dependent of
the implemented algorithm to count the steps. Furthermore, pedometers signif-
icantly underestimate the gait velocity of older adults [4]. The disadvantage of40

using wearable sensors in general for gate analysis is that the subject must not
forget to wear the device and has to recharge it regularly. The acceptance of
wearable sensor applications for long term monitoring is therefore low. Ambi-
ent pressure sensors can be used to build large sensor mats for the analysis of
gait. GAITRite® is a portable electronic walkway of 0.89m wide and between45

5 and 8m long where pressure sensors are embedded in a grid. This system is
frequently used for clinical and research purposes [3,19]. Imaging devices such as
the Microsoft Kinect have been presented to evaluate the gait [16]. The advan-
tage of using the depth RGB-D is the ability to capture different parameters of
gait such as walking speed, stride time and stride length. The disadvantages are,50

however, privacy related although only a silhouette of the subject is captured.
An unobtrusive way for the continuous measurement of gait velocity is using mo-
tion sensors. A specific lay-out of motion sensors was used in [8], who mounted
four motion sensors with a restricted view to ±4◦ in a line on the ceiling of a
hallway with approximately 61cm distance between them. The assumption of55

this method is that a long and narrow hallway is available to enforce the subject
to walk in a line. This is not always the case in elderly apartments.

[7] introduced a fully automated approach to calculate the Timed Up and
Go (TUG), including the walking speed, using ambient sensors. These sensors
consisting of force, light barriers and a Laser Range Scanner are incorporated in60

a chair to measure the walking direction and the speed. Both the GAITRite®
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and the TUG-chair are suitable for periodic instrumented clinical tests, but the
systems are expensive for continuous gait monitoring.

3 Sensor Data

We have continuously collected data, in several ambient assisted living apart-65

ments, for more than a year. The sensor networks used to collect data use the
Z-Wave protocol and consist of off-the-shelf binary sensors that measure mo-
tion, pressure on the bed, toilet flush and the opening and closing of cabinets
and doors. An overview of the location of the sensors in the apartment of one
resident is shown in Figure 1. The elderly are living their routine life and are not70

told to modify their behaviour in any way. The location of the sensors is chosen
so that all the important rooms in the apartment are covered and so that the
network does not affect the elderly’s daily life. For instance, the pressure sensor
for the bed is installed under the mattress and sensors in the kitchen are installed
above the stove, under the freezer, etc. A list of the all the sensors installed in75

the apartement of volunteer A is shown in Table 1.

Fig. 1. A map of the apartment of volunteer A equipped with a wireless sensor network.
Both apartments have the same basic size and layout. The number of used sensors, their
types and their positions were kept as similar as possible between the two apartments.

4 Approach

To calculate the gait velocity, we collect the walking paths of the resident in his
home during a period of time (e.g. week). We represent these walking paths by
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Id Sensor name Sensor type Room (number)

09 Hall Motion Hall (3)
10 Desk Motion Living room (6)
11 Kitchen Motion Kitchen (4)
12 Kitchen hob Motion Kitchen (4)
13 Living front Motion Living room (6)
14 Living back Motion Living room (6)
15 Bedroom Motion Bedroom (2)
16 Laundry Motion Laundry room (5)
17 Washbasin Motion Bathroom (1)
18 Shower Motion Bathroom (1)
19 Front Door Door Hall (3)
20 Freezer Door Kitchen (4)
21 Fridge Door Kitchen (4)
22 Cupboard1 Door Kitchen (4)
23 Cupboard2 Door Kitchen (4)
24 Cupboard3 Door Kitchen (4)
25 Balcony Door Living room (6)
26 Bed Pressure Bedroom (2)
27 Toilet Floating Bathroom (1)

Table 1. A list of the sensors (id, name, type and room) installed in the apartment of
Volunteer A, as shown in Figure 1. Cupboard1 contains coffee/tea items, cupboard2
contains spices and cupboard3 contains dinner dishes

trajectories in a graph where the nodes represent sensors and the edges represent80

the distances between them, and calculate the corresponding durations. For each
collected trajectory, the gait velocity is then equal to the length of the trajectory
divided by its mean duration. To deal with the non-Gaussian noise in the data,
we fit a probabilistic model to the durations and obtain the mean duration as
an estimated parameter of the model. Before describing our approach in detail,85

we next describe the challenges involved.

4.1 Challenges

In instrumental tests, both the walking path and its duration are known. As the
subject is instructed to walk without stopping, the gait velocity is therefore easy
to compute. The calculation of the walking speed from ambient sensor data used90

for continuous monitoring is more challenging:

– The walking path is neither fixed nor precisely known, as the resident is not
instructed to follow a specific walking path.

– The walking paths of the resident do not necessary follow straight lines.
– It is unknown if the resident’s walking paths are interwoven with some other95

activity or not.
– Motion sensors do not provide us with accurate locations, and to save their

batteries the sensors do not transmit every detection they make. The start
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time and location and the end time and location of the walking path are,
therefore, not known precisely due to the nature of the sensors.100

– There is more variation in the walking paths and speeds in natural conditions
than during a controlled test.

4.2 Features

When the resident performs his activities of daily living during a period of time,
the binary sensors generate a continuous stream of sensor-events. A sensor event105

en = (tn, sn) is defined as a tuple consisting of the time stamp tn of the sen-
sor signal (ON or OFF) and the identity of the sensor that fired that signal,
sn ∈ {s1, s2, . . . , s|S|}. 3 The sequence of N sensor-events collected during some
period of time can be represented as e =< e1, e2, . . . , eN >. The OFF-signals of
the motion sensor correspond to the end of the sleep-time of the sensor. These110

OFF-signals are ignored as they do not necessarily correspond to the end of
the movement of the resident. For the same reason, the OFF-signal of the float
sensor is filtered out as this signal indicates the end of filling up the toilet water
tank. Furthermore, if more than two consecutive sensor events come from the
same sensor, only the first and last event are taken into account. The reason115

is that many consecutive events of a sensor usually do not correspond to a dis-
placement of the resident, and we cannot associate any walking distance with
them. For example, consecutive events of the bed sensor mean that the resident is
changing his posture. Finally, the sensor events corresponding to visits to the res-
ident are automatically detected and excluded from the data under consideration120

[12]. The method used, Markov Modulated Multidimensional non-homogeneous
Poisson Process (M3P2), is an extension of the Markov Modulated Poisson Pro-
cess (MMPP) to allow the incorporation of multiple feature streams. The pe-
riodic portion of these features is modeled using a non-homogeneous Poisson
process, while the visits are modeled using a hidden state that varies according125

a Markov process.

To estimate gait velocity, we rely on sensor transitions τ
(n)
ij and their associ-

ated duration dn. Let a transition between sensors i and j be a pair of consecutive
sensor events en and en+1, where sn = i and sn+1 = j. The time stamp of the
transition is chosen to be tn and its duration is defined as dn = tn+1 − tn.130

4.3 Model

We represent the walking paths of the resident in his home by trajectories in
a graph. Figure 2 shows a graph of all possible walking paths of volunteer A.
The node identities in this figure correspond to the sensors shown in Figure 1.
The sensor ids, indicating the location of the resident, are used as nodes and the135

sensor-transitions, indicating the movement of the resident, are used as edges.

3 The actual value of the event is not relevant to our purposes: we are interested in
the knowledge that the resident is present at a certain location, not in their activity.
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As example, a trajectory corresponding to sensor sequence < 15, 27, 17 > con-
sists of three nodes and two edges. This trajectory represents the walking path
’bedroom-toilet-washbasin’ resulted from a toileting activity.

10

11 kitchen

14 13

25 09 19

15

26 bathroom 16

Fig. 2. A graph indicating the sensors that are topologically connected to each other.
The node ids correspond to the sensor ids depicted in Figure 1. The node kitchen (resp.
bathroom) consists of six (resp three) sensors that are topologically connected to each
other. These sensors are omitted to keep the overview of the graph clear

The mathematical representation of the graph is G = (V,E) where V =140

{s1, s2, · · · , s|V |} and E = {(i, j)| i is topologically connected to j}. To calculate
the average gait velocity in a period of time, we assume that the average duration
of typical paths in the house is representative of the person’s gait velocity. For
the calculation of the duration of the walking paths, we follow the approach:

1. We define a set of rules to create automatically extract valid walking paths145

(trajectories) from the sensor data and calculate the duration of the collected
trajectories

2. Construct a model consisting of some (mixture of) probability distribu-
tions(s) to fit these durations (data points).

3. From this model, we extract the mean duration of each path and compute150

the corresponding walking speed.

Identification of valid trajectories: Given a sequence of sensor events <
e1, e2, . . . , eN > collected during a period of time T (e.g. a week), we need to
identify subsequences that correspond to actual walking. We do this by cutting155

this sequence at edge (n, n + 1) if its duration dn = tn+1 − tn is larger than
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some threshold τ . Cutting the sequence at (n, n + 1) means that one walking
path ends with event en and a new path starts with event en+1. The variable τ
correspond to a ‘rest moment’ of the resident. This cutting action results in K
sensor sequence segments. Some segments correspond to the movement of the160

subject in the same room and are therefore not suitable for the calculation of
the gait velocity. Other segments, on the other hand, correspond to long and
complex activities. These activities may contain walking paths that are suitable
for the calculation of the gait velocity. Therefore, two possibilities to extract valid
potential walking trajectories from theses segments have been investigated:165

1. Automatically detect all trajectories that involve at least two rooms to ensure
that the collected trajectories correspond to a movement of the resident and
not to some activity in a room. These trajectories are referred as auto-
detected trajectories.

2. Search within the K segments for some predefined walking trajectories.170

These predefined walking trajectories are as long and straight as possible.
The objective is to collect trajectories similar to the walking path used by
the therapist to measure the gait velocity. They are selected by manually
inspecting the map of the apartment of the older adult. These trajectories
are referred as predefined trajectories.175

For all the collected trajectories, both auto-detected and predefined, the corre-
sponding duration is calculated.

Modelling the durations of the trajectories: The Poisson is a widely used
distribution to model time durations and is the correct model to use if our col-180

lected sequences all correspond to the same physical walking path in the space.
We therefore selected this distribution as a candidate model for the duration of
the collected trajectories. Some trajectories may, however, sometimes be inter-
woven with another trajectory, in which case a mixture of Poisson distributions
would be a more accurate model. Trajectories may also be interwoven with185

one or more activities, whose duration is not adequately modelled by a Poisson
distribution. We therefore also selected a mixture of a Poisson and a Normal
distribution as a candidate model.

In our experiments we evaluated the following set of three candidate models:

1. a Poisson distribution with parameter Θ1 = λ,190

2. a mixture of two Poisson distributions with parameters Θ2 = (α, λ1, λ2),
3. a mixture of a Poisson and a Normal distribution Θ3 = (α, λ, µ, σ).

The probability distribution function (PDF) of a Poisson and a Normal distri-
bution are given in Equation 1 and Equation 2. The PDF of a mixture a Poisson
and a Normal distribution is given in Equation 3. The PDF of the mixtures of
two Poisson distributions can be obtained in the same way.

P (k) =
λk

k!
e−λ (1)
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P (k) =
1

σ
√

2π
e−(k−µ)

2/2σ2

(2)

P (k) = α
λk

k!
e−λ + (1− α)

1

σ
√

2π
e−(k−µ)

2/2σ2

(3)

We estimated the parameters α, λ, λ1, λ2, µ, and σ maximizing the likelihood.

Calculate a goodness of fit function of the constructed distributions:195

After fitting the durations with different probability distributions, the goodness
of fit is calculated using the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC) metrics given by:

AIC = −2 log(L̂) + 2K (4)

BIC = −2 log(L̂) +K log(N) (5)

In these equations, L̂ represents the likelihood function of the model, K rep-
resents the number of parameters of the model and N is the number of obser-200

vations. Both AIC [1] and BIC [15] metrics measure a penalised likelihood of
the model. The penalty portion of AIC is only dependent of the number of the
parameters of the model, while the penalty of the BIC is also dependent of the
number of observations.

5 Experiments205

5.1 Objectives

A set of three experiments is conducted to collect useful walking paths, to find
the best model and to evaluate the resulting gait velocity. In the first experi-
ment, we investigate the the effect of varying the duration of the rest time on
the resulting trajectories, and find the optimal value of τ for our dataset. Our210

hypothesis is that small values of τ will result in the collection of few useful tra-
jectories (i.e., trajectories involving at least two rooms), while large values of τ
result in long sensor trajectories corresponding to walking paths with too many
interwoven activities. We seek for a value of τ that results in sufficient useful
trajectories, so that we can estimate our model parameters accurately, and that215

does not result in too many trajectories with interwoven activities.
In the second experiment, we show that the duration of the collected

trajectories cannot be modelled optimally with a simple, unimodal distribution.
Our hypothesis consists of two parts: on one hand, we expect the most frequently
auto-detected trajectories to be short (between rooms) and therefore should be220

fitted by one probability distribution as these trajectories correspond to walking
paths without interwoven activities. On the other hand, the predefined trajec-
tories are long and may correspond to walking paths with interwoven activities
and therefore need to be fitted using a mixture of probability distributions.
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In the third experiment, we compare the walking speed measured occa-225

sionally by the therapist with the gait velocity estimated from the sensor data.
Our hypothesis is that the walking speed measured by the therapist is higher
than the gait velocity estimated from the sensor data, because the residents tend
to improve their behaviour as a response of being watched. We also expect the
estimated gait velocity to correlate with the motor Assessment of Motor and230

Processing Skills (AMPS) measured by the therapist.

5.2 Sensor data and annotation

Two sensor datasets collected in our living labs are used to conduct the described
experiments. The two sensor datasets are collected during 15 months between
April 2013 and July 2014 in the apartment of two volunteers living alone. Vol-235

unteer A, a male of 84 years old, has difficulties with getting up from a chair and
with walking. He occasionally walks in the apartment using a wheelchair as a
support. Volunteer B, a female of 80 years old, has no difficulty with walking in
her apartment. During this period, the two volunteers are visited by a therapist
for the KATZ [9] and AMPS assessments [6]. The walking speed test taken over 3240

meters is part of these assessments. The results of these assessments are given in
Figure 3. The KATZ-score varies between a minimum value of 0, indicating the
subject needs NO assistance, and a maximum value of 6 indicating the subject
is dependent of assistance for performing the Activities of Daily Livings (ADLs).
Two values of the AMPS, the motor part (AMPSM ) related to physical skills245

and the process part (AMPSP ) related to cognitive skills, are calculated from
the assessment. A decrease of the AMPS indicate a decrease in the functional
health of the subject.

The assessment scores show an approximately stable functional health of
volunteer A during this period of 15 months. This may be concluded from the gait250

velocity and the AMPS scores, which show no significant increase or decrease.
For volunteer B, however, the assessment scores show an increase of the gait
velocity and of the process AMPS, indicating the subject’s functional health is
improving. On the other hand, the increasing of the KATZ score indicates the
subject needs assistance for preforming her ADLs, which is conflicting with the255

improvement of her functional health. Her motor AMPS is stable during this
period.

6 Results

6.1 Experiment 1: Effect of the rest time τ

For each subject, we collected sensor data around the dates the therapist con-260

ducted the KATZ and AMPS assessments. We ensured that the selected weeks
do not lack any sensor data. This resulted in 9 weeks of sensor data around the
4 assessment dates given in Figure 3. From these 9 sequences of sensor readings,
valid trajectories are extracted using the two proposed methods, auto-detected
and predefined trajectories, as described in section 4.265
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Fig. 3. Ground truth data consisting of the AMPS, KATZ and the gait velocity test
over 3 m distance. The gait velocity (m/s) is repeated twice and the mean value is
notated. An increase of the KATZ score ({0, 1, . . . , 6}) indicates more need of assistance.
A decrease of the AMPS ([−3, 4]) indicates a decrease in the functional health. The
exact assessment dates for both volunteers are ’14-Aug-2013’, ’20-Nov-2013’, ’14-Mar-
2014’ and ’27-Jun-2014’.

The frequency of the collected auto-detected trajectories as a function of the
rest moment τ show that most auto-detected trajectories have a low frequency,
which means that during a week, many unique trajectories are collected. For
example, Figure 4(a) shows that for τ = 10 more than 96% of the collected 713
trajectories have a frequency lower than 10. Comparable figures hold for the270

other values of τ ∈ {5, 8, . . . , 70}. The plot, given in 4(b), of the most frequently
collected auto-detected trajectories (the peaks in the histograms) as a function
of τ show that τ = 30 gives us the largest number of auto-detected trajectories
for which a good model fit can be expected.

Conducting the same experiment using the sensor data of volunteer A re-275

sulted in an ‘optimal’ value of τ = 60 for collecting both auto-detected and
predefined trajectories. Note that this higher values of τ for volunteer A com-
pared to volunteer B correlates with the measured low walking speed of volunteer
A compared to volunteer B.

6.2 Experiment 2: Modelling trajectory length280

In this experiment, we have selected 9 weeks of sensor data similar to the first
experiment and we used the ‘optimal’ values of τ found in experiment 1. For
the collected trajectories, the durations are calculated and fitted to the selected
three models. For each trajectory we calculated the AIC and BIC values. Figure 5
gives an example of the observed durations in a histogram and the fitted mixture285

of a Poisson and a Normal distribution.
Table 2 shows the AIC and BIC average values for the two most frequently

auto-detected trajectories. These results show that the Poisson distribution fits
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(a) Histogram of the durations of auto-detected trajectories using dif-
ferent values of τ .
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Fig. 4. Visualisation of the collected auto-detected trajectories using different values
of τ . Nine weeks of sensor data is used to collect these trajectories. The chosen weeks
are around the assessment dates conducted by the occupational therapist.
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the calculated duration less well than the two mixtures of probabilities. We
may conclude that the most frequently walked paths during a week are almost290

always interwoven with some other activity. We therefore reject the first part
of our hypothesis that these auto-detected trajectories are best fit using one
distribution.

Table 3 shows the average AIC and BIC scores for the four collected prede-
fined trajectories. Overall, we see that the mixture of a Poisson and a Normal295

distribution gives the best fit. This is conform the second part of our hypothesis.
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Fig. 5. A histogram of the duration of the collected ’living room back to kitchen’ tra-
jectories. The data is fitted using a mixture of a Poisson and a Normal distribution.
The X-axis denotes the durations, the Y-axis denotes the estimated probability and
the Z-axis denotes the observed frequencies.

6.3 Experiment 3: Occasional versus continuous measurement of
the gait velocity

To compare the gait velocity measured occasionally by the therapist with the
gait velocity estimated from the sensor data, we used sensor data collected dur-300

ing three weeks around the AMPS and KATZ assessment day: the week the
assessment is conducted, the week before and the week after the assessment.
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AIC and BIC of the model with parameter
collected trajectories Θ1 = λ Θ2 = (α, λ1, λ2) Θ3 = (α, λ, µ, σ)

Liv room front - kitchen 208.86 209.62 136.92 139.19 132.37 135.40
Toilet - bedroom 142.56 143.27 114.74 116.89 115.07 117.94

Kitchen - Liv room front 135.91 136.77 121.12 123.69 119.86 123.30

Table 2. Results of goodness of fit of the selected (mixture of) distributions applied
to the collected top three auto-detected trajectories. The AIC and BIC values are
calculated using 9 weeks of sensor data of volunteer A collected around the KATZ and
AMPS assessment dates.

AIC and BIC of the model with parameter
collected trajectories Θ1 = λ Θ2 = (α, λ1, λ2) Θ3 = (α, λ, µ, σ)

Front door - Liv room back 162.71 155.52 120.96 118.21 113.65 115.89
Hall - Liv room back 347.17 348.22 229.97 233.12 196.58 200.78

Liv room back - Front door 178.86 171.26 117.18 115.02 112.40 114.38
Liv room back -Hall 469.79 471.16 283.17 287.26 250.17 255.63

Table 3. Results of goodness of fit of the selected (mixture of) distributions applied
to the collected predefined trajectories. The AIC and BIC values are calculated using 9
weeks of sensor data of volunteer B collected around the KATZ and AMPS assessment
dates.

This resulted in 12 weeks of sensor data for the 4 assessments dates given in
Figure 3. For this experiment, the value of τ and the probabilistic model found
in the first two experiments are used, meaning that we fit a mixture of a Poisson305

distribution and a Normal distribution to the data. The value of λ, correspond-
ing to the mean of the Poisson distribution, is used as the estimated duration.
Using the distance of the collected trajectories obtained from the map of the
apartment, we were able to estimate the average gait velocity from the sensor
data.310

Figure 6 gives the gait velocity estimated from twelve weeks of sensor data,
its corresponding confidence interval and the walking speed measured by the
therapist. The results show that, for volunteer A, the walking speed value mea-
sured by the therapist is higher that the average gait velocity estimated from
sensor data. In two of the the four measurements is this value significantly higher.315

For volunteer B, all measurements of the therapist are significantly higher than
the gait velocity estimated from sensor data. These results are conform to our
hypothesis that the subjects tend to improve their behaviour as a response of
being assessed. Using a sample t-test, we tested the null hypothesis that the
estimated gait velocity values come from independent normal distributions with320

equal means. The results (p > 0.4) show no significant increase of decrease of the
gait velocity for both subjects during the period of 15 months, which is conform
their motor AMPS.
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Fig. 6. Gait velocity measured by the therapist and estimated using a mixture of a
Poisson and a Normal distribution with parameter Θ3 = (α, λ, µ, σ). Each data point
represents λ of one predefined trajectory collected during one week. The confidence
interval of the estimated speed is also given. Four predefined trajectories and three
weeks around the AMPS and KATZ assessment day are used.



15

7 Conclusion

This study shows the potential of continuously monitoring the indoor gait ve-325

locity of older adults living alone using a simple sensor network. We have shown
that unconstrained behaviour leads to a multimodal distribution of path dura-
tions, as walking is interwoven with other activities. We have shown that we can
nevertheless extract the gait velocity from unconstrained sensor data, by fitting
a mixture model to the durations. In particular, the results show that the dura-330

tions of the collected trajectories can be best fitted using a mixture of a Poisson
and a Normal distribution as a model. Apart from the gait velocity, the method
also allows us to detect the most recurrent indoor walking trajectories.

We applied this model to two sets of sensor data collected in a period of 15
months. Our results showed that the estimated gait velocity was conform the335

motor AMPS scores extracted from the assessments conducted by an occupa-
tional therapist. In accordance with the findings of [20], our results also show
that the walking speed measured by the therapist is significantly higher than the
average gait velocity. The subjects tend to improve their behaviour as a response
of being assessed.340

In a real-time situation, we could imagine a sliding window of one week
needed to collect enough valid walking trajectories to be fitted by the model.
In future work, we will extend the short period of 15 months during which
data was collected, and during which the functional health of our volunteers
did not change significantly. Moreover, the few assessments of the therapist do345

not provide a solid ground truth about the functional health of the resident.
Currently, our group is involved in a monitoring older adults after having a hip
surgery using comparable sensor networks. This project gives an opportunity
to apply our findings to a new situation where we expect the walking speed to
increase in a relative short period, as the functional health of these subjects350

gets better during the rehabilitation. It will be fascinating to have the same
pattern from the gait velocity estimated from the sensor data. An interesting
future challenge is the measurement of the gait velocity in a multi-person home
setting.
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