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ABSTRACT
Existing research on the recognition of Activities of Daily
Living (ADL) from simple sensor networks assumes that
only a single person is present in the home. In real life there
will be situations where the inhabitant receives visits from
family members or professional health care givers. In such
cases activity recognition is unreliable. In this paper, we
investigate the problem of detecting multiple persons in an
environment equipped with a sensor network consisting of
binary sensors. We conduct a real-life experiment for detec-
tion of visits in the office of the supervisor where the office
is equipped with a video camera to record the ground truth.
We collected data during two months and used two models,
a Naive Bayes Classifier and a Hidden Markov Model for a
visitor detection. An evaluation of these two models shows
that we achieve an accuracy of 83% with the NBC and an
accuracy of 92% with a HMM, respectively.

Categories and Subject Descriptors
I.5.1 [PATTERN RECOGNITION]: Models—Statisti-
cal ; I.5.4 [PATTERN RECOGNITION]: Applications—
Signal processing ; H.1.2 [MODELS AND PRINCIPLES]:
User/Machine Systems—Human information processing ; I.2.1
[ARTIFICIAL INTELLIGENCE]: Applications and Ex-
pert Systems—Office automation; I.2.6 [ARTIFICIAL IN-
TELLIGENCE]: Learning—Parameter learning

General Terms
Algorithms, Experimentation, Measurement

Keywords
Ambient assisted living and health monitoring, Sensor net-
works for pervasive health care, Naive Bayes Classifier, Hid-
den Markov Models
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1. INTRODUCTION
A large number of countries face severe population age-

ing in the near future. As a consequence of this, the cost of
health care is expected to grow enormously the coming years.
One way to keep these costs limited is to introduce assistive
technology that offers physical help, cognitive help or social
help. For this, sensing systems are needed that monitor the
patient. Networks of simple sensors are becoming popular
for measuring activities. This can be simple actions, like in
fall detection systems, or more complex activities. A large
group of monitoring systems focuses on recognizing ADL:
activities performed on a daily basis such as sleeping, toi-
leting and cooking. The list of ADL was set up by [8], and
is used by professional caregivers for monitoring the wellbe-
ing of a person, in particular of elderly, by registering how
well ADL are performed over time. In automatic recogni-
tion systems very often probabilistic models such as the hid-
den Markov model (HMM) [14] or conditional random fields
(CRF) [13] are used to map the observed sensor data onto
the hidden activity states. However, all presented research
on the recognition of ADL from simple sensors assumes that
only a single person is present in the home.

In our group we do long term experiments where we try to
recognize ADL from sensor networks. We monitor a num-
ber of elderly for more than 6 months, and study trends
and correlations with ADL measurements from professional
nurses. For that reason it is important to be sure that the
data we are collecting indeed originates from a single person,
and to discard data of that is caused by multiple persons in
the home. In this paper we present our work on detecting
the number of people in an environment equipped with a
simple sensor network. Given the application, we simplify
the problem to detecting whether there is a single person or
multiple persons in the environment. As a test situation we
equipped the office of the supervisor with multiple sensors.

In section 2 we describe related work. In section 3 we de-
scribe our approach, where we compare a naive Bayes clas-
sifier with a HMM approach. The experiments and set-up
are described in section 4. Section 5 describes the results
and section 6 concludes the paper.

2. RELATED WORK
Much research has been carried out on detecting, counting

and tracking multiple people and monitoring their activities
using video cameras [5]. Real time visual surveillance sys-
tems for outdoor environment already exist [6, 7]. However,



there is much less research on the detection and tracking of
multiple people with sensor networks, especially those with
simple binary sensors. A lot of research has focused on rec-
ognizing the ADLs of a single person. Different kinds of
methods like Hidden Markov Models (HMM) [14], hierarchi-
cal hidden Markov model (HHMM) [10], Switching hidden
semi-Markov models (SHSMM) [2], Rao-Blackwellised par-
ticle filter [12] have been used for modelling and inference of
the ADLs of a single person.
In [16] the problem of simultaneous tracking and activity
recognition (STAR) was introduced. The goal of STAR is
to track multiple persons in a home setting and to recog-
nize their activities. From an experimental setting where
mainly motion sensors and contact switches are installed, it
is shown that the use of Particle Filtering method has po-
tential to solve the STAR problem. However, the accuracy
of the tracking decreases as more people are in the house.
In [1] two HMM’s (an activity model and a person model)
have been used to detect a human social interaction in an
office. Unfortunately a deeper insight into the methodology
and accuracy is not given in the paper. In [4], [15] and [3]
an emerging pattern based multi-user recognizer (epMAR)
to recognize both single-user and multi-user activities is pro-
posed. The sensor platform used for this experiment mainly
consists of wearable sensors. The sensors are not only simple
binary sensors, but also sophisticated sensors like accelera-
tion, location, sound and voice sensors. The focus of this
paper is detecting the presence of one or more persons in
an environment using a simple sensor network consisting of
binary sensors.

3. APPROACH
The sensor network we use to count the number of persons

in a room consists of motion detectors and a switch on the
door, giving a binary output vector O(t) at every time stamp
t when one of the sensors changes value. We define

• The set S = {s1, ..., s|S|} as the set of sensors installed
in the office of the supervisor, where |S| is the total
number of sensors.

• The observation O(t) = (o
(t)
1 , . . . , o

(t)

|S|) as the vector

of sensor events at time stamp t generated by the |S|
sensors. o

(t)
i = 1 if the i-th sensor generates an event

at time t, otherwise o
(t)
i = 0. For notation simplicity,

the superscript (t) will be discarded.

In this paper we want to classify whether there is a sin-
gle person or multiple persons in the room and compare
two classifiers. The first classifier is a Naive Bayes Classi-
fier, that for every event at time stamp t gives a class on
the basis of the observation O(t). The second classifier is a
Hidden Markov Model, that classifies the entire observation
sequence O(1), . . . , O(T ). We first describe the method we
used for feature selection and then describe the classifiers.

3.1 Feature selection
The process of feature selection we have used consist of

defining a set of basic features and a set of logical operations
on these basic features. In our experiments we then gener-
ate all combinations of these basic features and the logical
operators, and test which feature set performs best. To this
end we have selected for every sensor event oi at time stamp

t two basic features xi = oi and xi+|S| = 1 − oi. On ev-
ery possible combinations of these 2|S| features, which are

in total
∑2|S|

i=1 (2|S|)!/((2|S|− i)!i!) combinations, we applied
the methods Naive Bayes Classifier and the Hidden Markov
Models.

3.2 Method: Naive Bayes Classifier
The Naive Bayes Classifier is used as a visitor detector.

Therefore we define:

• The set C = {1, 2} as the set of classes. c = 1 if the
number of persons in the office is exactly one, i.e. there
is no visit. c = 2 if the number of persons in the office
is more than one i.e. there is a visit. For notation
simplicity, C will be used in the equations i.s.o. |C| to
denote the total number of classes.

• The vector of classes as Y . Yt = 1 if there is exactly
one person (usually the supervisor) in the office at time
stamp t. Yt = 2 if there are two or more persons in
the office.

• The vector X = (x1, x2, ..., xD) as the feature vector

of an observation o(t). The feature vector is binary, so
xi = 1 if the i-th feature is true, otherwise xi = 0.

To detect the visits of the supervisor at the office at some
time stamp t, We are interested in calculating the posterior
probability defined by P (Y |x). to calculate this probability
we apply the Bayes rule, as given in equation 1.

P (Y |X) =
P (X|Y )P (Y )

P (X)

=
P (X|Y )P (Y )∑C
y=1 P (X|y)P (y)

(1)

For each class c, the class prior πc is defined in equation 2.

πc := P (Y = c) (2)

As the feature vector is binary, We may calculate the MLE
π̂ of π as given in equation 3.

π̂ = (π1, . . . , πC) = (N1/N, . . . , NC/N) (3)

where Nc is the number of training examples that have class
label c and N the total number of the training examples.

AssumingX has dimensionD and the features are i.i.d, we
can use a multinomial distribuion for the conditional prob-
ability P(X|Y). Denoting Θ, the parameters of this multi-
nomial distribution, then the conditional density function
given a class c is given in equation 4.

P (X|Y = c; Θ) =

D∏
i=1

P (xi|Y = c) (4)

where,

P (xi|y = c; θc) = θxi
c (1− θc)1−xi (5)

The MLE Θ̂ of Θ is given in equation 6.

θ̂ijc =
#{Xi = xij , Y = c}

#{Y = c} (6)

To avoid the problem of zero counts which will result in
zero probabilities in the equation 4, we use La Place smoth-
ing estimator for Θ given in equation 7.



Figure 1: Graphical view of a first order Hidden
Markov Model

θlaplaceijc =
#{Xi = xij, Y = c}+ 1

#{Y = c}+ C
(7)

Given a test feature x which is extracted from an observa-
tion o, we can calculate the posterior probability P (Y = c|x)
for each class c by using the Bayes rule given in 1 and the
estimates given in 3 and 7. If the posterior probability
P (Y = c|x) is bigger than 0.5 then the predicted class is
c, as we only have two classes.

For the implementation of the Naive Bayes Classifier, the
class NaiveBayes of the numerical computing environment
Matlab has been used.

3.3 Method 2: Hidden Markov Models
The problem of detecting visits can also be tackled using

Hidden Markov Models (HMM). A graphical representation
of the first order HMM is given in Figure 1. In this Figure,
the observation vector at time t denoted by xt is represented
by the features selected in section 3.1. The hidden state
at time t denoted by zt is represented by the visits to the
supervisor at the office. zt = 1 if the number of persons in
the office is exactly one i.e. there is no visit. zt = 2 if the
number of persons in the office is two or more i.e. the is a
visit. The HMM is mathematically represented by 8.

λ = (A,B, π) (8)

where A = {aij : 1 ≤ i, j ≤ N} defines the transition
probability matrix, B = {bj(k) : 1 ≤ j ≤ N, 1 ≤ k ≤
M} defines the emission probability matrix and π = {πi :
1 ≤ i ≤ N} defines the initial state probability. aij is the
transition probability of taking the transition from state si
to state sj . bj(k) is the conditional probability of emitting
the k − th observation given the state sj . The set of the
states, given by S = {si : 1 ≤ i ≤ N}, is represented by the
number of persons (one or more than one) in the office. The
set of the observations, given by V = {vk : 1 ≤ k ≤ M},
is represented by the feature space discussed in section 3.1.
The dimension of V is equal to Nd, where d is the number
of features used.

The parameters (A,B, π) of the HMM used in equation
8 are estimated using the maximum likelihood estimates.

Given a sequence of features x1:T with length T , we want
to predict whether the supervisor has a visit at the office
during this period of time. For this reason we calculate for
each time stamp t (1 ≤ t ≤ T ) the posterior state proba-
bility. This posterior is, for the visits state, defined as the
conditional probability of being at state s2 at time stamp
t, given the observed sequence of features x1:T . Calculating
this posterior probability for every t (1 ≤ t ≤ T ), will re-

sult in a vector of posterior state probabilities denoted by
p(zt = s2|x1:T ). Counting the number of posteriors with val-
ues bigger than 0.5, the probability of a visit is then equal
to number of this counts divided by the length of the poste-
riors vector, which is equal to T . The general posterior state
probability is given in equation 9. In the first equality we
applied the Bayes rule and in the second equality, we write
the vector x1:T as (x1:t, xt+1, xt+1:T ) and apply the condi-
tional independence property together with the product rule
of probability.

p(zt|x1:T ) =
p(x1:T |zt)p(zt)

p(x1:T )
(9)

=
α(zt)β(zt)

p(x1:T )
(10)

where

αi(zt) := p(x1:t, zt) (11)

and

βi(zt) := p(xt+1:T |zt) (12)

αi(zt) represents the joint probability of all the observations
up through time t and that we are in state si at time t and
βi(zt) represents the conditional probability of the future
observations from time t + 1 up to time T given the state
state si at time t.

The forward probabilities αi(zt) and the backward prob-
abilities βi(zt) can be iteratively computed using dynamic
programming algorithms called the Forward and Backward
Procedure.

For the implementation of the estimation of the parame-
ters and the inference we used the HMM functions hmmesti-
mate and hmmdecode of the numerical computing environ-
ment Matlab.

4. EXPERIMENTAL SET-UP
Our test-bed consists of the office of the supervisor as

shown in Figures 2 and 3. In the office a sensor network as
described in [14] and consisting only of binary sensors, has
been installed. The type of the sensors and their place in
the office are listed in Table 4. We recorded the visits to the
office during two months with a video camera installed in a
corner of the office. To produce accurate and easy to make
annotations we stored the video images of the camera every
one minute to a different file. The days that the supervisor
is not in the office or the video camera was not able to store
images are removed from the data set. The sensor events
we used are stored in seconds precision while the annotation
is made in minutes precision. This means that when the
supervisor has a visit at some time stamp hh : mm : ss,
all the sensor events within the same minute, including the
events just before the beginning of the visit, are annotated
as a visit. Using the exact annotation, we should annotate
all the events with a second part smaller than ss as having
no visit and all the events with a second part bigger or equal
than ss as having a visit. To deal with this discrepancy in
precision, we conducted an experiment to define the optimal
length of the sensor event to use. This experiment and the
corresponding results are described in 5.2.

The total number of annotated sensor events recorded this
two months was 26543, where a percentage of 45% belongs



Figure 2: The office of the supervisor at the research
centre: the supervisor sitting on the chair at his desk
having a short visit of a researcher.

Figure 3: The top view layout of the office showing
the places of the sensors described in Table 4

to the visits class and 55% tot the no visits class. An ex-
ample of sensor events during a day is shown in Figure 4.
The corresponding annotated number of persons in the of-
fice during the same day is shown In Figure 4. From these
two figures we can see that when the supervisor is alone
sitting at his desk (between 09:41 and 09:59 and between
17:17 and 18:38), the sensor with id equal to 5 generates
the most events. When the supervisor has a meeting at the
round table, the sensor with id 3 generates the most events.
In case the number of persons participating to the meeting
is more than 3, the sensor with id 4 also generates events.
Note that even there is no person in the office some sensors
may generate some noisy event like sensor with id 5 at 11:57
and 15:08.

5. RESULTS

5.1 imbalanced class sets
A confusion matrix as shown in Table 5.1 is typically used

to evaluate performance of a machine learning algorithm.
The overall classification accuracy, based on the confusion
matrix and defined by Acc = (TP + TN)/N is very of-
ten used to measure the performance of the classifier. In
the conducted experiments (especially when testing the per-

Sensor id Sensor type Place in the office

1 switch on the door
2 movement above the door
3 movement under the meeting table

pointing to the passage
4 movement under the meeting table

pointing to the wall
5 movement above the desk

Table 1: The type and place of the sensors installed
in the office. See also Figure 3
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Figure 4: The sensor events during a working day.
The type and location of each sensor is given in Table
4
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Figure 5: The number of persons in the office during
a working day.



formance of HMM with a relative big sequence length) the
percentage of the sequences belonging to class visits may
be too small comparing to the percentage of the ’no visits’
class. Using the traditional overall accuracy for this case is
therefore inappropriate. The reason is that when applying a
naive classifier which assigns all the complete test data the
majority class will lead to a high accuracy while the minor-
ity class is totally misclassified. One way to deal with this
imbalance problem is by under-sizing the majority class or
over-sizing the minority class. However, The disadvantage is
that over-sizing will lead to loss of information while under-
sizing may lead to overfitting [11]. Another way to deal with
this problem is to assign a high cost to the misclassification
of the minority class and a low cost to the misclassification
of the majority class while trying to maximize the overall ac-
curacy. In other words, it is desirable to have a metric that
gives high prediction accuracy over the minority class, while
maintaining reasonable accuracy for the majority class. To
this end we used the Geometric Mean [9] given in equation
13 which maximizes the accuracy of each class while keeping
these accuracies balanced. Note that Acc+ is the same as
the recall of the positive class and Acc− the recall of the
negative class. Acc+ is also called the true positive rate and
Acc− is called the true negative rate.

Predicted class
yes no Total

Actual class
positive TP FN
negative FP TN

Total N

Table 2: Confusion Matrix

Accgm =
√
Acc+ ×Acc− (13)

=

√
TP

TP + FN
× TN

TN + FP
(14)

5.2 Naive Bayes Classifier
In order to be able to apply the NBC as described in

section 3.2, the raw data is needed to be processed. To this
end, we first removed the sensor data which is not annotated.
Then we removed the data corresponding to the absence of
persons in the office. The remaining data, denoted as the
complete data set, is split into two categories:

• The category training set containing 60% of the com-
plete data set. This set is used to estimate the param-
eters of the NBC.

• The category test set containing 40% of the complete
data set. This set is used to determine the accuracy of
the NBC.

The sensor events we used are stored in seconds precision
while the annotation is made in minutes precision. Us-
ing one minute sample resolution will lead to loss of data
while using one second sample resolution may affect the
speed of the classifier. We conducted therefore different
experiments to define the optimal sample resolution. In
these experiments we use eight different sample resolutions
r ∈ {1, 2, 5, 10, 15, 20, 30, 60} for the time stamp of the sensor
event. Using a sample resolution r means that the seconds

event time stamp r = 5 r = 10 r = 15
hh:mm:04 hh:mm:00 hh:mm:00 hh:mm:00
hh:mm:05 hh:mm:05 hh:mm:00 hh:mm:00
hh:mm:07 hh:mm:05 hh:mm:00 hh:mm:00
hh:mm:10 hh:mm:10 hh:mm:10 hh:mm:00
hh:mm:22 hh:mm:20 hh:mm:20 hh:mm:15
hh:mm:45 hh:mm:45 hh:mm:40 hh:mm:45
hh:mm:59 hh:mm:55 hh:mm:50 hh:mm:45

Table 3: A set of examples of event time stamps
and the corresponding rounded time stamps when
using a sample resolution r ∈ {5, 10, 15}. For simpli-
fication of the notation the date part of the event is
discarded.

sample
resolution
(sec)

overall
accuracy
(%)

geometric
mean
(%)

best fea-
ture com-
bination

01 87 83 [3,5]
02 87 83 [3,5]
05 86 83 [3,5]
10 86 83 [1,2,3,8],[2,3,5,10]
15 85 82 [1,2,3,8]
20 85 82 [1,2,3,8]
30 85 81 [2,3,4,5,10],[1,2,3,8]
60 84 80 [2,3,4,5,10],[1,2,3,8]

Table 4: The overall accuracy, the Geometric mean
and its best feature combinations corresponding to
different sample resolutions in seconds. The values
are the averages over 30 random experiments.

part s of a time stamp of a sensor event is rounded accord-
ing to the function fr(s) = r.(s/r), where ’/’ denotes the
integer division. Table 5.2 gives a set of event time stamps
and the corresponding rounded time stamps when using a
sample resolution r ∈ {5, 10, 15}. Note that when using res-
olution r = 1 the event time stamps remain the same and
when using the resolution r = 60 the seconds parts of the
time stamp are set to 00.

The experiments conducted are repeated 30 times. For
theses experiments the mean of the overall accuracy values,
the mean of the Geomteric mean values and the correspond-
ing best feature are calculated. The results of these exper-
iments are given in table 5.2. The best feature combina-
tion is defined as the most (at least 50%) occurred combina-
tion(s). From this table we see that when using a small sam-
ple resolution (r ∈ {1, 2, 5}), only two features are needed to
fit the data well and when using a bigger sample resolution
(r ∈ {30, 60}) five features are needed to fit the data well.
The results in Table 5.2, show also that the values of the
overall accuracy and the geometric mean seem to decrease
with the sample resolution, but not in a significant way.

5.3 Hidden Markov Model
In order to be able to apply the HMM as described in

section 3.3, we have preprocessed the data on the same way
as done for the Naive Bayes Classifier. The only difference is
that for the NBC a set of single feature vectors for training
and testing while for the HMM a set of consecutive feature



sample
resolution
(sec)

length
se-
quence

overall
accu-
racy(%)

geometric
mean(%)

best fea-
ture com-
bination

01 300 95 90 [3,7]
02 150 95 91 [3,7]
05 60 95 91 [3,5]
10 30 94 92 [3,4,6,7]
15 20 93 92 [3,7]
20 15 93 92 [3,5]
30 10 93 92 [2,3,5,8]
60 05 92 92 [2,4,7,9]

Table 5: Different sample resolutions (in seconds)
and the corresponding length of the sequence (num-
ber of sensor events) of a time window of 5 minutes.
For each each sample resolution the average overall
accuracy, the average Geometric mean and its best
feature combinations are calculated.

vectors x1:N with length N is used.
The length N of a sequence x1:N is dependent of the sam-

ple resolution we used. The values used are given in table
5.3. Note all the values correspond to a time window of 5
minutes. Hence, when using a sample resolution of 60 sec-
onds, the length of a sequence is at most 5 and when using a
sample resolution of 15 seconds, the length of the sequence
is a most 20.

For each training set a random test set has been used to
calculate the posterior state probabilities and therefore to
determine if the sequence was well-classified or misclassified.
A test sequence x1:N is well-classified if the majority (>50%)
of the predicted states of this sequence is well classified.

To determine the performance of the HMM, we conducted
an experiment on the same way as done for the NBC. The
results of this experiment, as given in Table 5.3, show that
the values of the overall accuracy (respectively the geomet-
ric mean) seem to decrease (respectively increase) with the
sample resolution, but not in a significant way. Note that
the best feature combinations given in Table 5.3 are one of
the lot of combinations that fit the HMM well.

5.4 Comparison of the methods
The difference between the Naive Bayes Classifier and the

Hidden Markov Model is that with the NBC the feature vec-
tor xt consists of one observation at some time stamp t while
the feature vector x1:N used for HMM consists of a sequence
of observations with some length N . Comparing the results
of the NBC as shown in Table 5.2 to the results of the HMM
as shown in Table 5.3, we see that the HMM over-performs
the NBC. This holds for both the overall accuracy as for the
Geometric mean accuracy. These tables also show that the
influence of the different sample resolutions on the perfor-
mance of the models is not significant as the overall accuracy
and the Geometric mean do not significantly increase or de-
crease with the sample resolution.

6. CONCLUSIONS
In this paper we studied the problem of detecting the

presence of multiple persons in an environment. We con-
ducted a real-life experiment where the office of the super-
visor, equipped with a sensor network using binary sensors,

has been monitored during two months. We applied two
classification methods, the Naive Bayes Classifier and the
Hidden Markov models.The results show the effectiveness of
the HMMs.

As our group is interested in recognizing ADLs of elderly
people, there are some limitations in this work. Although
the used data set is real life, the experimental setting is lim-
ited to one room, the office, and the number of sensors is
small. Also the type and the duration of the activities of
the supervisor are different from these of elderly people. For
a future work, we will apply (at least) the same techniques
on a bigger sensor data set generated by a number of in-
dependently living elderly people we are monitoring at this
moment. Their houses are equipped with the same sensor
network, but have more than one room and the number of
the sensors are much more than used in the office of the
supervisor.
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