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Abstract. For people with early-dementia (PwD), it can be challenging to remem-
ber to eat and drink regularly and maintain a healthy independent living. Exist-
ing intelligent home technologies primarily focus on activity recognition but lack
adaptive support. This research addresses this gap by developing an Al system in-
spired by the Just-in-Time Adaptive Intervention (JITAI) concept. It adapts to indi-
vidual behaviors and provides personalized interventions within the home environ-
ment, reminding and encouraging PwD to manage their eating and drinking rou-
tines. Considering the cognitive impairment of PwD, we design a human-centered
Al system based on healthcare theories and caregivers’ insights. It employs rein-
forcement learning (RL) techniques to deliver personalized interventions. To avoid
overwhelming interaction with PwD, we develop an RL-based simulation protocol.
This allows us to evaluate different RL algorithms in various simulation scenar-
ios, not only finding the most effective and efficient approach but also validating
the robustness of our system before implementation in real-world human experi-
ments. The simulation experimental results demonstrate the promising potential of
the adaptive RL for building a human-centered Al system with perceived expres-
sions of empathy to improve dementia care. To further evaluate the system, we plan
to conduct real-world user studies.

Keywords. reinforcement learning, intelligent home environment, dementia,
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1. Introduction

Dementia is a progressive neurodegenerative disorder that affects the elderly and dimin-
ishes their cognitive functions [1]. As the population ages and caregiver shortages grow,
supporting people with early dementia (PwD) to live independently becomes crucial [2].
One of the key challenges is maintaining their circadian rhythm, especially for eating
and drinking. Forgetting to eat can lead to serious health concerns. However, it is impos-
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sible for caregivers to constantly monitor whether PwD eat enough food. Therefore, an
intelligent system integrated with the home environment that can regularly remind and
monitor PwD to eat at appropriate times becomes essential. Intelligent home technolo-
gies have emerged as promising solutions to enhance the living environment for PwD.
However, existing systems often focus on activity detection [3, 4], without considering
personalized interventions to provide adaptive supports for eating and drinking scenar-
ios. Meanwhile, previous studies [5, 6] suggest that adaptive interventions are important
for PwD, as their needs and body conditions differ from person to person. For instance,
visual reminders may not be effective for those with visual impairments. An inappro-
priate reminder could be frustrating because it shows a lack of empathy for the user’s
individual needs.

Inzlicht et al. [7] highlight that AI has the potential to offer perceived unconditional
empathy without bias, possibly reducing human compassion fatigue, particularly in rou-
tine tasks. Therefore, inspired by the just-in-time adaptive intervention (JITAI) [8] de-
sign concept, which aims at adapting to an individual’s changing internal and contextual
state to provide the right type and amount of support, we introduce the Who takes care
artificial intelligence (AI) system. Such a personalized system could adapt to the behav-
ior of the individual user and provide a suitable set of signals to nudge him/her to go to
eat. Several unique difficulties were encountered while developing this system. Firstly, as
our target users often have cognitive impairments, this can lead to a lack of responsive-
ness to the system, requiring higher robustness of the system for missing or noisy data.
Furthermore, since caregivers indicate that preferences among PwD vary widely due to
differing health conditions, the Al must be designed to be perceived as empathic by the
user, such that the system can be acceptable and easy-to-use by PwD.

To address these challenges, we design the Al system based on literature [9, 10, 11]
and caregivers’ inputs from surveys and interviews. It contains a three-phase framework
to provide personalized intervention for nudging PwD to eat and drink during meal times.
The reinforcement learning (RL) techniques are employed and integrated into the system
to determine a suitable mix of signals for individual users. Before real-world implemen-
tation and experiments, we need to ensure the validation of the RL algorithms and the
robustness of the Al systems, to avoid errors or unexpected behaviors for our sensitive
target users. We therefore further develop a simulated system prototype. Our preliminary
study involves simulation experiments to test and refine the system, including how it per-
forms under diverse PwD’s behaviors and how several selected RL algorithms perform
under this context. The experiments compare various RL algorithms to identify the most
effective one. Additionally, we tested the algorithms’ adaptability and tolerance to the
possible changing situation of the environment to evaluate their resilience and flexibility
for practical scenarios. This paper aims to develop an Al system that could ensure inter-
ventions are not only personalized but also adaptive to individual behaviors and prefer-
ences, optimize the Who takes care system in sending right type of signal combinations
at the right timing, thus enhancing PwD’s eating and drinking routines in a supportive,
human-centric manner.

2. Related Works

Previous studies have investigated the potential of intelligent environment for healthcare
to assist PwD in maintaining independent living at home. Several home care technolo-
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gies are integrated, including using Al for activity recognition (AR) [12], or utilizing
ambient sensors like passive infrared sensors to monitor the residents’ activities. While
several studies focus on identifying eating and drinking behaviors [3, 4], others [13, 14]
emphasized that relying solely on AR may not fully support PwD. An effective interven-
tion should also remind PwD to go to eat and drink. Moreover, considering the speciality
of PwD, the nudging signals should also be designed as personalized and adaptive inter-
ventions to fill the gap between the current intelligent home environment and the needs
of PwD.

Reinforcement learning (RL) has proven to be an effective and efficient approach
for building personalized systems that adapt to individual user behavior and preferences;
however, building an application in intelligent environments for PwD introduces new
challenges. While several studies [15, 16, 17] have successfully employed RL for per-
sonalization in health applications, the scenario could be too complex for users with cog-
nitive impairments who might exhibit a lack of responsiveness. Our project focuses on
developing an RL-based system for users with early-stage dementia, particularly to assist
in the eating and drinking scenario. By integrating caregiver insights, which we gathered
from surveys and interviews, we seek to bridge the gap between technological capability
and human-centered design, ensuring that the system is responsive, human-centric, and
adaptable to the diverse and evolving needs of PwD.

3. Intelligent Home System
3.1. System Overview

The intelligent home system consists of signal-devices, sensors and an Al module that
analyzes the data coming from the sensors and based on them determines which signal-
devices to turn on and off. The AI module learns to deliver personalized nudging sig-
nals based on user behaviors. We adopted a ‘three-step interaction’ approach [6] into a
‘three-stage escalated eating scenario’ with increasing intensity of signals. As shown in
Figure 1, the system reminds PwD three times a day with signals, gently guiding them
through three stages. At the end of each stage, sensors detect whether the user has started
eating. Both automatic and manual detection methods are employed. For the automatic
method, we will use motion or vibration sensors attached to the dining table and chairs
to determine if there is an eating activity. For the second method, users will be provided
with a controller that allows them to manually indicate ‘I have eaten’ by pressing a ‘Yes’
button. Based on sensor detection and user feedback, if the user has performed an eating
activity, the system stops operation; otherwise, after 10 minutes it escalates to a more
intensive type of signal to draw the user’s attention. After three iterations, the system
stops the current intervention until the next mealtime.

3.2. Reinforcement Learning Method

We formulated our Al module as a contextual multi-armed bandit (CMAB) problem,
addressing the unknown preferences of people with dementia in mealtime interventions.
Figure 2 represents an overview of the interaction framework, reflecting both the real-
world and simulation scenarios. It is worth mentioning that in real-world scenarios,
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Eight combinations of signals,
e.g. scent, music, video, etc.

Environment

w‘ é(.

Contexts: meal time
{breakfast, lunch, dinner}

Agent (RL algorithms)

Sensors Human simulator

Figure 2. Overview of the Al Simulation System

the simulated UserBot with hidden preferences will be replaced by the human target
users. They will interact with the system through ‘Signal-Based Interaction’. The system
will present various interventions at different mealtimes. There are six signals, ranging
from low to high intensity, including scent (low), music (low), light (medium), image
(medium), voice (high), and video (high), based on prior studies on intelligent home
technologies [18, 19, 20]. Our interventions comprise eight distinct signal combinations,
each consisting of three signals, one from each level of intensity. At each mealtime, the
system suggests a three-signal combination, and employs a three-stage Escalation Sce-
nario (as illustrated in Figure 1 for gentle encouragement [6]. In other words, three sig-
nals will be delivered one by one with increasing intensity, as described in Section 3.1.
We define the key components of RL as follows:

* Decision Times: Set t to index decision time: once per meal, three times per day.

* Contexts: C; € €, time of the day (i.e., breakfast, lunch, and dinner time) is in-
dexed by C;, which indicates the user’s context C at the decision time ?.

* Action: A, € </, actions are indexed by A,. There are eight actions (i.e., signal
combination) in the action space. In every activation time ¢, the system will choose
one action to nudge the user to go eat.

* Reward: R; € {0,1}. After each trial, the system receives a reward from human
simulator. R = 1 indicates the user reacted or the sensors detected eating activity;
R = 0 indicates the user did not react or eating activity was not detected.
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Six selected algorithms are implemented into the simulation environment: e-Greedy
action selection [21], Upper Confidence Bound (UCB) [22], Thompson Sampling (TS)
[23, 24], Deep Epsilon-Greedy [25], Linear Upper Confidence Bound (LinUCB) [26],
and Contextual Thompson Sampling (CTS) [24]. Among them, the first three algorithms
cannot take the context of action (i.e., time of meal) into consideration for making deci-
sions, while the other three algorithms can. Comparing the performance of various RL
algorithms, we aim to not only identify the best-performed algorithm but also investigate
the effectiveness of context in our Al system. In this paper, we only demonstrate integrat-
ing CTS in the RL framework in Algorithm 1, while the other algorithms follow a simi-
lar structure. Beginning with equal initial beliefs, CTS dynamically adapts its approach
based on each meal’s context. At decision points, it samples from a Beta distribution,
reflecting the probability of each action’s success given past experiences, and selects the
most promising action (i.e., signal combination) to display. The CTS beliefs are updated
after receiving users’ responses: positive responses strengthen its belief in the action’s
success, while negative reactions do the opposite. This continuous learning loop opti-
mizes the nudging strategy and the system eventually displays preferable interventions
to the user.

Algorithm 1 Contextual Thompson Sampling Algorithm for Eating Scenario

Input: Prior parameters o, 3, contexts %, action space .2/
Initialize prior parameters a, 8 to 1 for each context and action
for each decision time ¢ (three times per day for each meal) do
Observe the context C; (time of day: breakfast, lunch, dinner)
for each action a in &7 do
Sample 6,(t) from a Beta distribution with parameters «[C;][a] and B[C][q]
end for
Choose action A, = argmax, 6,(¢) to nudge the user
Deliver action A; and observe reward R;
Update a[C]|[A;] with &t[C;][A;] + R, (successes)
Update B[C;][A;] with B[C][A;] + (1 — R;) (failures)
end for
Return: Updated parameters a,

3.3. Simulation Protocol

Since PwD are particularly sensitive to signals, we introduce a simulation protocol tai-
lored for them, identifying the ethical and practical constraints before deploying the pro-
totype. This protocol employs a human simulator (as depicted in Figure 2), designed to
simulate the behaviors and responses of users, allowing us to test our Al system’s effec-
tiveness in a controlled, but also realistic environment. The human simulators are built
based on the healthcare literature [9, 10, 11], including the potential responses to the in-
tervention. We further consulted with domain experts about possible response behaviors
of PwD, ensuring experiments cover different types of users. Following this protocol, the
experiment design cannot only primarily ensure the system’s effectiveness but also align
with the needs of PwD before real-world implementation.
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4. Simulation Experiments and Results

We evaluate our designed Al system in multiple simulation experiments. To ensure the
simulations are aligned with the real situations, we follow the interaction flow presented
in Figure 2 and use different human simulator settings to simulate the diverse behaviors
of human users. To assess effectiveness, we conducted 600 simulation trials in each sim-
ulation run (i.e., three meals per day for six months) with various user preferences for
generalizability. Multiple simulation runs were also conducted and the average results
over 1000 simulation runs are presented in this section.

4.1. Experiment 0: Contextual and Non-contextual algorithms

We first compared six RL algorithms in the same simulated environment to study the im-
portance of context-based interventions. Each algorithm interacted with a baseline user
model having one random specific preferred signal for each meal (e.g. scent for breakfast,
light for lunch and image for dinner). As shown in Figure 3, learning curves and average
rewards revealed that contextual algorithms CTS, Deep Epsilon-Greedy, and LinUCB
outperformed non-contextual counterparts in both effectiveness and speed of learning.
CTS achieved the best performance among the algorithms, reaching an average reward
close to 1 within 50 trials (i.e.,about 17 days’ intervention) and maintaining stability.
Furthermore, CTS demonstrated its robustness and reliability through consistently low
standard deviations across multiple runs. In the following experiments, we only present
the results of three contextual algorithms, which are the best performing algorithms.

Table 1. Average Rewards with Standard Deviation

on Serrgten . Mean Standard

g ‘ RL Algorithm (avg. reward)  Deviation
3 Epsilon Greedy 0.79 0.4
K UCB 0.83 +0.37
TS 0.89 +0.31

Deep Epsilon-Greedy 0.91 +0.28

R LinUCB 0.85 +0.35

CTS 1 +0

Figure 3. Baseline Results

4.2. Experiment 1: User Type Adaption

We investigated how well different RL algorithms could adapt to diverse user prefer-
ences in a simulated environment designed to manage mealtimes for PwD. According
to domain experts, we created five user types (A-E) with varying responses to nudging
signals: Type A positively reacts to up to two signals per meal (e.g. music and light for
breakfast, light and video for lunch, and music and scent for dinner); Type B is the same
as Type A but will never react to one meal (e.g. no reaction during lunch); Type C pos-
itively responds only to one signal type (e.g. video for all three meals); Type D shows
no reaction to any signal; and Type E positively reacts to one of the signals in a certain
intensity level (e.g. music for breakfast, and scent for lunch and dinner).
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Figure 4. Experiment 1: User Type Adaption

Figure 4 showed that all RL algorithms could learn and adapt to user preferences,
achieving stable average rewards across user types A, C, and E. CTS algorithm generally
outperformed the others in these cases. Interestingly, for user type C with unchanging
preferences, LinUCB exhibited a faster learning rate than CTS, suggesting its potential
for scenarios where the relationship between context and reward is unclear.

4.3. Experiment 2: Preference Shifts Over Time

This experiment evaluates the Al system’s ability to dynamically adapt to users’ shifting
preferences, which is important for maintaining engagement with users whose needs and
behaviors may change over time. If so, we aim to further identify which RL algorithm can
learn and quickly converge in this dynamic scenario. Thus, we introduce two user types:
Type F, where users initially respond to one type of nudging signal but then suddenly
shift to another after one month (i.e., 90 trials), and Type G, depicting users who become
unresponsive over time. In User Type F (results in Figures 5a), if the user maintains
responsiveness to the signal, the RL algorithm can adapt to the shift within about 50
trials (meals). For User Type G (results in 5b), the loss of responsiveness may provide
a warning sign to caregivers to intervene and indicate potential changes in the user’s
dementia status.
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(a) User Type F (b) User Type G

Figure 5. Experiment 2: Sudden Preference Shift After 90 Trials

4.4. Experiment 3: Acceptance & Tolerance Test

We aim to further evaluate how the RL algorithms can perform under realistic and chal-
lenging conditions. The Acceptance Test examined the algorithm performance when user
responses do not consistently translate into rewards, introducing acceptance rates rang-
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Figure 6. Experiment 3: Acceptance & Tolerance Test

ing from good (0.75) to low (0.25) to mimic the unpredictable nature of real-world sce-
narios. Figure 6a, 6b indicated a significantly declined performance as acceptance rates
decreased, highlighting the system is sensitive to the environment’s response.

Tolerance Test evaluated system robustness against noisy environments by incorpo-
rating 10% and 20% invalid data to simulate errors in user input or sensor data. Figure
6¢ showed moderate resilience to data inaccuracies, with certain impacts on performance
as error rates increased. Together, these experiments demonstrate the robustness of our
Al system and emphasize the importance of maintaining user engagement and reducing
noisy data from the home environment.

5. Conclusion & Future Work

In conclusion, this paper presents a novel, RL-based Al system, specifically focusing
on eating and drinking scenarios for PwD in an intelligent home environment. Our sim-
ulation experiments tested various RL algorithms to determine their effectiveness in a
simulated environment mimicking real-world situations, including users’ behaviors and
noisiness. The results showcase the successful simulation of a human-centered Al sys-
tem, demonstrating the potential of the RL system in adapting to the unique behaviors
and needs of PwD, in order to support them to live independently. For future work, we
aim to extend our research by conducting real-world trials with early-stage PwD and
further validate our system more thoroughly. Although we have cooperated with domain
experts and caregivers to make the Al human-centered, based on the current small range
of scenarios, the empathicness of the Al is still limited. With deeper investigation into
the interaction between humans and Al, we aim to enhance our system’s capabilities.
Our eventual goal is to create a personalized, adaptive, and empathic Al system that can
meet the needs of PwD and release the burden of their caregivers.
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